Past readers of my articles will notice that I have a particular interest in the duality of Security and Privacy within the universe of the Internet. IoT is no exception… In the case of IoT, the bottom line is that for wide-spread acceptance, functionality and a profitable outcome the entire system must be perceived as secure and trustworthy. If data cannot be trusted, if incorrect actions are taken, if the security of individuals and groups is reduced as a result of this technology there will be significant resistance.
Security
A number of security factors have been discussed in the prior posts in relation to sensors, actuators and the infrastructure/network that connects and supports these devices. To summarize, many devices do not, or likely will not, provide sufficient security built in to the devices themselves. Once installed, it will typically be unreasonable or impossible to upgrade or alter the security functionality of the IoT devices. Some of the issues that plague IoT devices are: lack of a security layer in the design; poor protocols; hard-coded passwords; lack of – or poorly implemented – encryption; lack of best practice authentication and access control, etc.
From a larger perspective, the following issues surrounding security must be addressed in order for a robust IoT implementation to succeed:
- Security as part of the overall design of individual sensors/actuators as well as the complete system.
- The economic factor in security: how much security for how much cost is appropriate for a particular device? For instance, a temperature sensor used in logistics will have very different requirements than an implanted sensor in a human pacemaker.
- Usability: just as in current endpoints and applications, a balance between ease of use and appropriate security must be achieved.
- Adherence to recognized security ‘best practices’, protocols and standards. Just as “ipsec” exists for general ip networks, work is under discussion for “IoTsec” – and if such a standard comes into existence it will be incumbent on manufacturers to accommodate this.
- How functional security processes (authentication, access control, encryption of data) will be implemented within various IoT schemas and implementations.
- As vulnerabilities are discovered, or new security practices are deemed necessary to implement, how can these be implemented in a large field of installed devices?
- How will IoT adapt to the continual change of security regulations, laws and business requirements over time?
- How will various IoT implementations deal with ‘cross-border’ issues (where data from IoT sensors is consumed or accessed by entities that are in different geographic locations, with different laws and practices concerning data security?
Privacy
The issue of privacy is particularly challenging in the IoT universe, mainly due to both the ubiquity and passivity of these devices. Even with mobile apps that often tend to reduce privacy in many ways the user has some degree of control as an interface is usually provided where a measure of privacy control can be implemented. Most IoT devices are passive, in the sense that no direct interaction with humans occurs. But the ubiquity and pervasiveness of the the sensors, along with the capability of data aggregation, can provide a huge amount of information that may reduce the user’s privacy remarkably.
As an example, let’s examine the use case of a person waking up then ‘driving’ to work (in their autonomous car) with a stop on the way for a coffee:
- The alarm in their smartphone wakes up the user – which as it detects sleep patterns through movement and machine learning – transmits that info to a database, registering among other things the time the user awoke.
- The NEST thermostat adjusts the environment, as it has learned the user is now awake. That info as well is shared.
- Various motion and light sensors throughout the home detect the presence and movement of the user, and to some degree transmit that information.
- The security system is armed as the user leaves the home, indicating a lack of presence.
- The autonomous car wakes up and a pre-existing program “take me to work, but stop at Starbucks on Main Road for a coffee first” is selected. The user’s location is transmitted to a number of databases, some personalized, some more anonymous (traffic management systems for example) – and the requirement for a parking space near the desired location is sent. Once a suitable parking space is reserved (through the smart parking system) a reservation is placed on the space (usually indicated by a lamp as well as signalling any other vehicle that they cannot park there).
- The coffee house recognizes the presence of a repeat customer via the geotagging of the user’s cellphone as it acquires the WiFi signal when entering the coffee shop. The user is registered onto the local wireless network, and the user’s normal order is displayed on their cell for confirmation. A single click starts the order and the app signals the user when their coffee and pastry are ready. The payment is automatically deducted at pickup using NFC technology. The payment info is now known by financial networks, again indicating the location of the user and the time.
- The user signals their vehicle as they leave the coffee shop, the parking space allocation system is notified that the space will be available within 2 minutes, and the user enters the car and proceeds to be driven to work.
It is clear that with almost no direct interaction with the surrounding ecosystem many details of the user’s daily life are constantly revealed to a large and distributed number of databases. As the world of IoT increases and matures, very little notification will ever be provided to an individual user about how many databases receive information from a sensor or set of sensors. In a similar manner, instructions to an actuator that is empirically tied to a particular user can reflect data about that user, and again the user has no control over the proliferation of that data.
As time goes on, and new ‘back-office’ functionality is added to increase either the usefulness of IoT data to a user or the provider, it is most likely that additional third party service providers will acquire access to this data. Many of these will use cloud functionality, with interconnections to other clouds and service providers that are very distant, both in location and regulatory environment, to the user. The level of diffusion will rapidly approach that of complete ambiguity in terms of a user having any idea of who has access to what data that IoT devices within their environment provide.
For the first time, we collectively must deal with a new paradigm: a pervasive and ubiquitous environment that generates massive data about all our activities over which we essentially have no control. If we thought that the concept of privacy – as we knew it 10 or 20 years ago – was pretty much dead, IoT will make absolutely certain that this idea is dead, buried and forgotten… More than anything else, the birth of substantial IoT will spark a set of conversations about what is an acceptable concept of privacy in the “Internet of Everything” age…
One cannot wish this technology away – it’s coming and nothing will stop it. At some level, the combination of drivers that will keep enabling the IoT ecosystem (desire for an increased ‘feature-set of life’ from users; and increased knowledge and efficiency from product and service providers) will remain much higher than any resistance to the overall technology. However, the widespread adoption, trust and usefulness will be greatly impacted if a wide-spread perception grows that IoT is invasive, reduces the overall sense of privacy, and is thought of as ‘big brother’ in small packages.
The scale of the IoT penetration into our lives is also larger than any previous technology in human history – with the number of connected devices poised to outnumber the total population of the planet by a factor of more than 10:1 within the next seven years. Even those users that believe they are not interacting with the Internet will be passively ‘connected’ every day of their lives in some way. This level of unavoidable interaction with the ‘web’ will shortly become the norm for most of humanity – and affect those in developing economies as well as the most technologically advanced areas. Due to the low cost and high degree of perceived value of the technology, the proliferation of IoT into currently less-advanced populations will likely exceed that of the cellphone.
While it is beyond the scope of this post to discuss the larger issue of privacy in the connected world in detail, it must be recognized that the explosive growth of IoT at present will forever change our notion of privacy in every aspect of our lives. This will have psychological, social, political and economic results that are not fully known, but will be a sea change in humanity’s process.
The next section of this post “IoT from a Consumer’s Point of View” may be found here.
References:
Rethinking Network Security for IoT
Tagged: Internet of Things, IoT, networks, privacy, security